Where to? A History of Autonomous Vehicles

(ComputerHistory.org, companion article to the “Where To?” Exhibit) – When Robert Whitehead invented the self-propelled torpedo in the 1860s, the early guidance system for maintaining depth was so new and essential he called it “The Secret.” Airplanes got autopilots just a decade after the Wright brothers. These days, your breakfast cereal was probably gathered by a driverless harvester. Sailboats have auto-tillers. Semi-autonomous military drones kill from the air, and robot vacuum cleaners confuse our pets. (Right: Sketch by Leonardo Da Vinci – circa 1478 – of a clever navigation mechanism that could be attached to any vehicle and allow for autonomous movement through a predetermined course. Credit: Biblioteca Ambrosiana, Milan, Italy / De Agostini Picture Library / Metis e Mida Informatica / Veneranda Biblioteca Ambrosiana / The Bridgeman Art Library)

Yet one deceptively modest dream has rarely ventured beyond the pages of science fiction since our grandparent’s youth: the self-driving family car. Unlike Mars rovers or sailboats, cars need to navigate the complex world of city streets, passing inches away from fragile, litigious human beings. This article explores both the history of autonomous vehicles in general, and that elusive goal of a car that drives itself. Several groups say they are now close to making it a reality. If they succeed, how will they change our world? Could autonomous cars replace public transportation? Would they make our cities more walkable, or supersize them with unimaginable sprawl?


Driverless Car of the Future, advertisement for “America’s Electric Light and Power Companies,” Saturday Evening Post, 1950s. Credit: The Everett Collection.



Draft animals and distracted pedestrians can usually keep to a path on their own. But with the first self-propelled vehicles came the need to have an alert human guide the craft at every moment, or risk disaster. The modern experience of driving was born – that peculiar mix of anxiety, alertness, and boredom.

Sailboats were likely the first self-propelled vehicles, and possibly the first to have some form of automated steering, the auto-tiller. This device uses ropes to connect something like a weathervane to the boat’s tiller, so that the craft stays on course even with shifting winds.

The first widely used motorized vehicles were steamboats and trains. The latter adopted their guiding tracks more to support their huge weight than for directional control, but tracks serve both ends. Just a decade or so after its invention, the airplane got its first autopilot. The kind of self-guiding that carried torpedoes to their targets was repurposed for another medium – the air. By the early 1940s the German V-1 drone bomb was buzzing its way to London on stubby wings. Its successor, the V-2 rocket, touched the edge of space itself.


Sopwith Cuckoo bomber (piloted) launching a torpedo, circa 1918. Credit: © IWM (Q 69295)


The Dream

Old people began to cross the continent in their own cars. Young people found the driverless car admirable for petting. The blind for the first time were safe. Parents found they could more safely send their children to school in the new car than in the old cars with a chauffeur.

– “The Living Machine” by David H. Keller, Wonder Stories, 1935


Driverless cars and taxis have been improving the lives of millions in the pages of science fiction since 1935. Joined by GM’s automated highway plans in its seminal 1939 Futurama ride, the basic driverless dream has changed little in the ensuing decades. Besides reducing accidents and congestion, such cars might liberate city centers by eliminating the need for most parking.

Of course, in the pre-computer days of the 1930s, giving cars meaningful smarts was literally the stuff of science fiction. But there might be other ways….

Much of the danger of early motoring was not the cars but the era’s narrow, ill-marked roads, designed mostly for local travel. Railroads were still the superhighways. By the 1920s, a few began to dream of transforming roads into something more like a modern freeway system, where controlled access would simultaneously raise speeds and reduce accidents.

Italy’s Autostrada and Germany’s famous Autobahn plans stopped there. But American designer and futurist Norman Bel Geddes mated the Autobahn vision with the sorts of electronic speed and collision control systems common to railroads. His spectacular Futurama ride for General Motors at the 1939 World’s Fair also imagined trench-like lanes that would keep cars apart in their own “tracks.” The idea was to drive to the freeway normally, then engage the automatic systems and kick back until your exit. Related visions involved magnetic trails built into the road’s surface, or physical slots or troughs, or train-like rails engaging hidden steel wheels on the inside of each tire.


General Motors Futurama exhibit, “Highways & Horizons” pavilion, New York World’s Fair, 1939. Visitors rode for a third of a mile in audio-equipped chairs through the 35,738 square foot scale model of an imagined world of 1960, complete with automated highways. Credit: General Motors


Smart Highways

If you’ve ever seen a cockroach, you know that even insect nervous systems are capable of navigating through a complex environment at tremendous relative speed. A car-sized cockroach would be running – and turning, and dodging – at over 200 mph. Giving cars just a fraction of those navigating capabilities has taken 50 years.

It’s no accident that autonomy came to other vehicles first. However distant or exotic, the sea, the air, and even the surface of Mars are relatively forgiving environments for self-guiding vehicles. There are no children to dart out in their path; no traffic lights, or distracting billboards. Mostly, there’s just a lot less delicate stuff rushing by in close proximity – other vehicles, pedestrians, outdoor restaurants, flimsy wooden buildings.

Making cars smart is so hard, and that’s why early self-driving plans focused on special freeways for guiding suitably equipped cars safely along them –  more railroads than robots. The technology was projected in the 1939 Futurama and showcased by the 1950s. But getting the massive consensus needed to build public infrastructure never happened.


Autonomous Highway System tests, 1950s
GM and RCA developed automated highway prototypes with magnets in the car that tracked a steel cable embedded in the road. Credit: Radio Corporation of America (RCA)


The Digital Revolution: Air, Land, and Sea

The digital computer promised to make vehicles smart in ways rarely imagined outside of fiction. One of the first uses was guidance computers for nuclear missiles. Bulging cold-war budgets let designer build these with still bleeding-edge semiconductors instead of fragile vacuum tubes.

By the late 1960s experimental robots were navigating through novel environments at SRI and Stanford, testing out still-new AI techniques. By 1971 semi-autonomous space probes were landing on other worlds. Had a parachute not failed to deploy, the Soviet Mars 2 rover might have been crawling the surface of Mars on its own that year. Today, autonomous underwater vehicles can roam the seas for years at a time. The Voyager space probe, launched in 1977, recently became the first human object to travel beyond our solar system.


Soviet Mars Prop-M Rover, circa 1971. Both the Mars 2 and Mars 3 missions carried landers with sled-like Prop-M autonomous rovers, which were meant to roam short distances around the lander on an umbilical cord. Unfortunately, both landers failed. Credit: NASA



This is an excerpt. The full article was first published here at ComputerHistory.org, as a companion to the “Where To?” physical exhibit at the Computer History Museum in Mountain View, California. “Where To?” is in the free area of the Museum, but if you also wish to tour the permanent exhibitions mention “Energy Today” for a 40% discount on admission.



Marc Weber is Curatorial Director of the Internet History Program a the Computer History Museum and developed most of its galleries and exhibits on connected topics, including the Mobile, Web, and Networking galleries for the permanent exhibition “Revolution.He established Web history as a topic starting in 1995 with help from Sir Tim Berners-Lee and other online pioneers, and co-founded two of the first organizations in the field. Weber speaks and publishes widely and consults to companies, journalists, filmmakers and museums on the evolution of the online world.

Pin It on Pinterest