Can Carbon Dioxide Removal Save the World?

Excerpts and adaptations selected by AES Editorial Board

(The New Yorker) – In 2017 the concentration of carbon dioxide in the atmosphere reached a record four hundred and ten parts per million. The amount of CO2 in the air now is probably greater than it’s been at any time since the mid-Pliocene, three and a half million years ago, when there was a lot less ice at the poles and sea levels were sixty feet higher. This year’s record will be surpassed next year, and next year’s the year after that. Even if every country fulfills the pledges made in the Paris climate accord—and the United States has said that it doesn’t intend to—carbon dioxide could soon reach levels that, it’s widely agreed, will lead to catastrophe, assuming it hasn’t already done so.

Carbon-dioxide removal is, potentially, a trillion-dollar enterprise because it offers a way not just to slow the rise in CO2 but to reverse it. The process is sometimes referred to as “negative emissions”: instead of adding carbon to the air, it subtracts it. Carbon-removal plants could be built anywhere, or everywhere. Construct enough of them and, in theory at least, CO2 emissions could continue unabated and still we could avert calamity. Depending on how you look at things, the technology represents either the ultimate insurance policy or the ultimate moral hazard.

Carbon Engineering is one of a half-dozen companies vying to prove that carbon removal is feasible. Others include Global Thermostat, which is based in New York, and Climeworks, based near Zurich. Most of these owe their origins to the ideas of a physicist named Klaus Lackner, who now works at Arizona State University, at an institute he runs – the Center for Negative Carbon Emissions.

Lackner founded the Center for Negative Carbon Emissions at A.S.U. in 2014. Most of the equipment he dreams up is put together in a workshop a few blocks from his office.

In the workshop, an engineer tinkers with what looks like the guts of a foldout couch. Where, in the living-room version, there would have been a mattress, in this one was an elaborate array of plastic ribbons. Embedded in each ribbon was a powder made from thousands upon thousands of tiny amber-colored beads. The beads, Lackner explained, could be purchased by the truckload; they were composed of a resin normally used in water treatment to remove chemicals like nitrates. More or less by accident, Lackner had discovered that the beads could be repurposed. Dry, they’d absorb carbon dioxide. Wet, they’d release it. The idea was to expose the ribbons to Arizona’s thirsty air, and then fold the device into a sealed container filled with water. The CO2 that had been captured by the powder in the dry phase would be released in the wet phase; it could then be piped out of the container, and the whole process re-started, the couch folding and unfolding over and over again.

Lackner has calculated that an apparatus the size of a semi-trailer could remove a ton of carbon dioxide per day, or three hundred and sixty-five tons a year. The world’s cars, planes, refineries, and power plants now produce about thirty-six billion tons of CO2 annually, so, “if you built a hundred million trailer-size units you could actually keep up with current emissions.” He acknowledged that the figure sounded daunting. But, he noted, the iPhone has been around for only a decade or so, and there are now seven hundred million in use. “We are still very early in this game,” he said.

The way Lackner sees things, the key to avoiding “deep trouble” is thinking differently. “We need to change the paradigm,” he said. Carbon dioxide should be regarded the same way we view other waste products, like sewage or garbage. We don’t expect people to stop producing waste. (“Rewarding people for going to the bathroom less would be nonsensical,” Lackner has observed.) At the same time, we don’t let them shit on the sidewalk or toss their empty yogurt containers into the street.

“If I were to tell you that the garbage I’m dumping in front of your house is twenty per cent less this year than it was last year, you would still think I’m doing something intolerable,” Lackner said.

One of the reasons we’ve made so little progress on climate change, he contends, is that the issue has acquired an ethical charge, which has polarized people. To the extent that emissions are seen as bad, emitters become guilty. “Such a moral stance makes virtually everyone a sinner, and makes hypocrites out of many who are concerned about climate change but still partake in the benefits of modernity,” he has written. Changing the paradigm, Lackner believes, will change the conversation. If CO2 is treated as just another form of waste, which has to be disposed of, then people can stop arguing about whether it’s a problem and finally start doing something.

In 2003, few people besides Klaus Lackner were thinking about sucking CO2 from the air. Instead, the goal was to demonstrate the feasibility of an only slightly less revolutionary technology—carbon capture and storage (or, as it is sometimes referred to, carbon capture and sequestration).

With C.C.S., the CO2 produced at a power station or a steel mill or a cement plant is drawn off before it has a chance to disperse into the atmosphere. (This is called “post-combustion capture.”) The gas, under very high pressure, is then injected into the appropriate package of rock, where it is supposed to remain permanently. The process has become popularly—and euphemistically—known as “clean coal,” because, if all goes according to plan, a plant equipped with C.C.S. produces only a fraction of the emissions of a conventional coal-fired plant.

Over the years, both Republicans and Democrats have touted clean coal as a way to save mining jobs and protect the environment. The coal industry has also, nominally at least, embraced the technology; one industry-sponsored group calls itself the American Coalition for Clean Coal Electricity. Donald Trump, too, has talked up clean coal, even if he doesn’t seem to quite understand what the term means. “We’re going to have clean coal, really clean coal,” he said in March.

Currently, only one power plant in the U.S., the Petra Nova plant, near Houston, uses post-combustion carbon capture on a large scale. Plans for other plants to showcase the technology have been scrapped, including, most recently, the Kemper County plant, in Mississippi. This past June, the plant’s owner, Southern Company, announced that it was changing tacks. Instead of burning coal and capturing the carbon, the plant would burn natural gas and release the CO2.

Experts say that the main reason C.C.S. hasn’t caught on is that there’s no inducement to use it. Capturing the CO2 from a smokestack consumes a lot of power—up to twenty-five per cent of the total produced at a typical coal-burning plant. And this, of course, translates into costs. What company is going to assume such costs when it can dump CO2 into the air for free?

“If you’re running a steel mill or a power plant and you’re putting the CO2 into the atmosphere, people might say, ‘Why aren’t you using carbon capture and storage?’ ” Howard Herzog, an engineer at M.I.T. who for many years ran a research program on C.C.S.:. “And you say, ‘What’s my financial incentive? No one’s saying I can’t put it in the atmosphere.’ In fact, we’ve gone backwards in terms of sending signals that you’re going to have to restrict it.”

But, although C.C.S. has stalled in practice, it has become ever more essential on paper. Practically all below-two-degree warming scenarios assume that it will be widely deployed. And even this isn’t enough. To avoid catastrophe, most models rely on a yet to be realized variation of C.C.S., known as beccs.

beccs, which stands for “bio-energy with carbon capture and storage,” takes advantage of the original form of carbon engineering: photosynthesis. Trees and grasses and shrubs, as they grow, soak up CO2 from the air. (Replanting forests is a low-tech form of carbon removal.) Later, when the plants rot or are combusted, the carbon they have absorbed is released back into the atmosphere. If a power station were to burn wood, say, or cornstalks, and use C.C.S. to sequester the resulting CO2, this cycle would be broken. Carbon would be sucked from the air by the green plants and then forced underground. beccs represents a way to generate negative emissions and, at the same time, electricity. The arrangement, at least as far as the models are concerned, could hardly be more convenient.

beccs is unique in that it removes carbon and produces energy,” said Glen Peters, a senior researcher at the Center for International Climate Research, in Oslo. “So the more you consume the more you remove.” He went on, “In a sense, it’s a dream technology. It’s solving one problem while solving the other problem. What more could you want?”

The Center for Carbon Removal doesn’t really have an office; it operates out of a co-working space in downtown Oakland.

Noah Deich is the center’s executive director. After graduating from the University of Virginia, in 2009, he went to work for a consulting firm in Washington, D.C., that was advising power companies about how to prepare for a time when they’d no longer be able to release carbon into the atmosphere cost-free. It was the start of the Obama Administration, and that time seemed imminent. The House of Representatives had recently approved legislation to limit emissions. But the bill later died in the Senate, and, as Deich put it, “It’s no fun to model the impacts of climate policies nobody believes are going to happen.” He switched consulting firms, then headed to business school, at the University of California, Berkeley.

“I came into school with this vision of working for a clean-tech startup. But I also had this idea floating around in the back of my head that we’re moving too slowly to actually stop emissions in time. So what do we do with all the carbon that’s in the air?” He started talking to scientists and policy experts at Berkeley. What he learned shocked him.

“People told me, ‘The models show this major need for negative emissions,” he recalled. “But we don’t really know how to do that, nor is anyone really thinking about it.’ I was someone who’d been in the business and policy world, and I was, like, wait a minute—what?”

Business school taught Deich to think in terms of case studies. One that seemed to him relevant was solar power. Photovoltaic cells have been around since the nineteen-fifties, but for decades they were prohibitively expensive. Then the price started to drop, which increased demand, which led to further price drops, to the point where today, in many parts of the world, the cost of solar power is competitive with the cost of power from new coal plants.

“And the reason that it’s now competitive is that governments decided to do lots and lots of research,” Deich said. “And some countries, like Germany, decided to pay a lot for solar, to create a first market. And China paid a lot to manufacture the stuff, and states in the U.S. said, ‘You must consume renewable energy,’ and then consumers said, ‘Hey, how can I buy renewable energy?’ ”

As far as he could see, none of this—neither the research nor the creation of first markets nor the spurring of consumer demand—was being done for carbon removal, so he decided to try to change that. Together with a Berkeley undergraduate, Giana Amador, he founded the center in 2015, with a hundred-and-fifty-thousand-dollar grant from the university. It now has an annual budget of about a million dollars, raised from private donors and foundations, and a staff of seven. Deich described it as a “think-and-do tank.” “We’re trying to figure out: how do we actually get this on the agenda?”

A compelling reason for putting carbon removal on “the agenda” is that we are already counting on it. Negative emissions are built into the I.P.C.C. scenarios and the climate agreements that rest on them.

But even the most fervent advocates for carbon removal stressed the huge challenges of the work, some of them technological, others political and economic. Done on a scale significant enough to make a difference, direct air capture of the sort pursued by Carbon Engineering, in British Columbia, would require an enormous infrastructure, as well as huge supplies of power. (Because CO2 is more dilute in the air than it is in the exhaust of a power plant, direct air capture demands even more energy than C.C.S.) The power would have to be generated emissions-free, or the whole enterprise wouldn’t make much sense.

“You might say it’s against my self-interest to say it, but I think that, in the near term, talking about carbon removal is silly,” David Keith, the founder of Carbon Engineering, who teaches energy and public policy at Harvard,. “because it almost certainly is cheaper to cut emissions now than to do large-scale carbon removal.”

beccs doesn’t make big energy demands; instead, it requires vast tracts of arable land. Much of this land would, presumably, have to be diverted from food production, and at a time when the global population—and therefore global food demand—is projected to be growing. (It’s estimated that to do beccs on the scale envisioned by some below-two-degrees scenarios would require an area larger than India.) Two researchers in Britain, Naomi Vaughan and Clair Gough, who recently conducted a workshop on beccs, concluded that “assumptions regarding the extent of bioenergy deployment that is possible” are generally “unrealistic.”

For these reasons, many experts argue that even talking (or writing articles) about negative emissions is dangerous. Such talk fosters the impression that it’s possible to put off action and still avoid a crisis, when it is far more likely that continued inaction will just produce a larger crisis. In “The Trouble with Negative Emissions,” an essay that ran last year in Science, Kevin Anderson, of the Tyndall Centre for Climate Change Research, in England, and Glen Peters, of the climate-research center in Oslo, described negative-emissions technologies as a “high-stakes gamble” and relying on them as a “moral hazard par excellence.”

We should, they wrote, “proceed on the premise that they will not work at scale.”

Others counter that the moment for fretting about the hazards of negative emissions—moral or otherwise—has passed.

“The punch line is, it doesn’t matter,” Julio Friedmann, the former Principal Deputy Assistant Energy Secretary. “We actually need to do direct air capture, so we need to create technologies that do that. Whether it’s smart or not, whether it’s optimized or not, whether it’s the lowest-cost pathway or not, we know we need to do it.”

“If you tell me that we don’t know whether our stuff will work, I will admit that is true,” Klaus Lackner said. “But I also would argue that nobody else has a good option.”

One of the peculiarities of climate discussions is that the strongest argument for any given strategy is usually based on the hopelessness of the alternatives: this approach must work, because clearly the others aren’t going to. This sort of reasoning rests on a fragile premise—what might be called solution bias. There has to be an answer out there somewhere, since the contrary is too horrible to contemplate.

Early last month, the Trump Administration announced its intention to repeal the Clean Power Plan, a set of rules aimed at cutting power plants’ emissions. The plan, which had been approved by the Obama Administration, was eminently achievable. Still, according to the current Administration, the cuts were too onerous. The repeal of the plan is likely to result in hundreds of millions of tons of additional emissions.

A few weeks later, the United Nations Environment Programme released its annual Emissions Gap Report. The report labelled the difference between the emissions reductions needed to avoid dangerous climate change and those which countries have pledged to achieve as “alarmingly high.” For the first time, this year’s report contains a chapter on negative emissions. “In order to achieve the goals of the Paris Agreement,” it notes, “carbon dioxide removal is likely a necessary step.”

As a technology of last resort, carbon removal is, almost by its nature, paradoxical. It has become vital without necessarily being viable. It may be impossible to manage and it may also be impossible to manage without.


The full article was originally published from The New Yorker.

Pin It on Pinterest